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Abstract—Autonomous robotic systems have the potential to
deliver significant benefits via social interaction. The development
of such “socially assistive” robots could help address global
shortfalls in caregiving resources, improving quality-of-life in
areas such as nutrition, education, and autism therapy. Due to
the difficulty of pre-specifying behavior across a wide range of
scenarios, these robots must be able to learn social interaction
behavior.

One domain of particular interest is the development of
autonomous educational robots. It is difficult to program robust
models of interactive social behavior for educational co-play, in
part because the interaction takes place in a high-dimensional
state space with noisy state dynamics and sparse rewards. More-
over, an effective tutor must balance multiple objectives across
different time scales, such as teaching new words, acquiring
information about the student to model their knowledge, and
keeping the interaction fun and engaging.

In this paper we describe some of the challenges of learning
policies for educational co-play behavior, describe a work-in-
progress game to serve as a testbed for learning algorithms, and
outline a computational framework formulating educational co-
play as a Multi-Obective POMDP.

I. INTRODUCTION

Developing robots capable of interactive, educational play
could have profound impact on early childhood education.
In this paper we describe work to develop an educational
tutoring robot that can learn behavioral policies for playing
an interactive second language vocabulary game with a child.
Educational co-play is a challenging multi-objective problem:
at each interval in the game, the robot must decide which of
several distinct objectives to pursue, each of which provides
rewards at different time scales.

One can model educational tutoring as a planning problem,
with the robot acting on partially-observable mental states
and the success of the task based on the mental state of the
child after the interaction. As in navigation tasks, additional
information about the current state can be acquired, but at a
cost. In the case of the tutor, this might equal the cost of
administering a test, which both takes time and is likely to
negatively impact the rapport of the interaction.

Planning techniques and models, such as multi-objective re-
inforcement learning (MORL) or partially-observable Markov
decision processes (POMDPs), have been successful applied
to real-world tasks with similar computational structure, such
as construction or navigation. However, “primarily interactive”

tasks, such as tutoring or dialogue, differ from physical tasks
(even those that require some degree of social interaction) in
significant ways.

For example, in collaborative manufacturing, many
planning-based solutions are cast as scheduling problems,
solving for a sequence of tasks that the robot and human com-
plete mostly independently, engaging on a single task together
only when necessary. In contrast, “primarily interactive” tasks
such as educational tutoring or co-play are socially interactive
per se, the social interaction is not a by-product of the task,
it is the task.

Such tasks place a high emphasis on legible behavior, that
is, behavior that fits with, or helps the human interaction
partner refine, their mental model of the robot’s behavior. If
the human and robot are solving different parts of the task
separately, illegible behavior may have little consequence, as
the human can focus on their own task without considering the
robot’s step-by-step behavior. In domains with a high degree
of interaction throughout the task, illegible behavior may cause
the complete failure of the interaction (e.g., if the human
partner quits the task or decides to solve the task alone because
they do not trust or cannot predict the robot’s behavior).

More generally, the Markov assumption of many models
may limit their success in primarily interactive tasks. Equating
mental states to physical states may be a useful representation,
but typical mental states are not “memoryless”. The sequence
of events leading to the present moment are of vital impor-
tance, especially for legible behavior. The very concept of
legibility, (colloquially, the idea that “how you get there is
just as important as where you end up”) implies that relaxing
the Markov assumption may be necessary to learn policies for
legible socially interactive behavior.

II. RELATED WORK

Despite these challenges, planning models, especially
POMDPs, have been applied to derive educational tutoring
behavior policies under certain conditions. Typically, this takes
the form of learning a sequence of assignments or activities,
intended to communicate a new concept in as few actions
as possible. For example, Rafferty et al. modeled students
as optimal Bayesian learners for abstract category learning
and used a POMDP to guide a teacher’s policy [4]. Whitehill
et al. extended this work to the domain of second-language



vocabulary, using a POMDP-based model to simultaneously
assess students’ knowledge and learn a policy for when to
teach a new word, ask about a specific word, and test the
student, ending the learning session [6]. In both cases, the
state space is the model of the student’s knowledge, and does
not contain any real-time social or interaction-based features.

Knox et al. learned a decision-tree based behavior policy
for unstructured educational play with children from Wizard-
of-Oz demonstrations of play, a technique dubbed ”Learning
from the Wizard” (LfW) [3]. While the learned behavior was
largely successful at engaging the child and emulating human-
like play, no significant educational effects were found. In this
work, the state representation consisted entirely of real-time
social and interaction-based features; the child’s mental state
was not explicitly modeled.

Gordon & Breazeal used a Bayesian active learning algo-
rithm to model the child’s mental state and select new words
to introduce to a child in a vocabulary learning task. However,
outside of the choice of words introduced, the robot’s game
behavior was scripted [1].

III. A MULTIOBJECTIVE POLICY MODEL FOR
EDUCATIONAL CO-PLAY

In this section we describe a proposed game as an test do-
main for educational gameplay algorithms as well as a sketch
of two models for teacher behavior and student knowledge.

A. Game Domain Description

A robot and child sit across from each other with a tablet
in between. Each side of the tablet has a button, which the
players tap to ‘ring in’ (the robot can press the button digitally)
and answer when an image of a vocabulary word appears
in the center of the tablet screen. The first player to tap
their button is given an opportunity to say the word. If word
is pronounced correctly (assessed by a speech recognition
system), that player ‘wins‘ the round. This game is largely
about assessing children’s productive vocabulary on nouns,
though there are opportunities to assess the child’s receptive
vocabulary on the same words, e.g., by having the robot “win”
a round by correctly pronouncing a word, then seeing if the
child is able to do the same a few rounds later. Because
the robot has immediate knowledge of when the picture will
appear, we assume the robot can always ring in first to answer,
if the policy calls for it. Thus, the behavioral policy of the
robot largely determines how each round plays out.

B. Teacher Model

For each question, the robot can choose to ring in and win
and say word correctly (teaching the child how to pronounce
the word), not ring in and let the child demonstrate their
ability to pronounce the word, or ring in and win and say
word incorrectly.

These actions correspond to three different objectives. The
first objective is to teach the child new words, which the
robot achieves by demonstrating how to correctly pronounce
a word. The second objective is to gain information about

the child’s state of knowledge, by allowing the student to
pronounce words and evaluating their pronunciation. The robot
chooses which words to teach based on the student model, and
refining the student model can also help achieve the teaching
objective. The third objective is to maintain the social fluency
of the game, keeping the student engaged and enjoying the
interaction. As gameplay goes on, the words taught and the
robot’s knowledge about the child increase monotonically.
To be an effective tutor, the robot must keep the social
and affective dimensions of the task balanced, allowing the
interaction to continue, even if this objective may run counter
to the other two goals in the short term.

To balance these three objectives, we propose to model the
teacher as a multi-objective POMDP (MOPOMDP) [5], with
both student model and real-time interaction features (e.g.,
facial expression analysis, game state, time since last action)
represented in the state space, allowing the robot to draw on
a rich feature set relevant to each objective.

C. Student Model

We propose to model student vocabulary learning as a Gaus-
sian process, paired with active learning to decide which word
to introduce at the next time step. Gaussian processes have a
number of nice properties: at each point in the domain they
produce Gaussian outputs, so the robot can model both how
likely it is the child knows the word, as well as the uncertainty
about that estimate and use this information during the active
learning process to select the most appropriate word for the
current objective. Kapoor et al. combined Gaussian processes
with active learning for image classification, demonstrating
that GPs can be a computationally efficient way to classify
data in a large concept space [2]. For vocabulary words, the
kernel values could be derived from an pedagogically informed
concept-distance heuristic, or a phonetic similarity metric [1].

IV. PERSONALIZATION

In addition, the most effective tutors are those that can
personalize their pedagogical behavior to the specific child.
The benefits of personalized tutoring are wide-ranging and
well known, and the challenge of developing personalized
policies for educational co-play could be addressed through
transfer learning or other forms of domain adaptation.

V. CONCLUSION

In this paper we have described a number of challenges
related to deriving autonomous social interaction behavior
for educational co-play. We have also presented a work-in-
progress game environment, and Teacher and Student models
for learning social interaction behavior for educational tutor-
ing: a MOPOMDP model that balances competing objectives
in an educational game and a Gaussian process model of
student learning that allows for efficient assessment of the
student’s knowledge via active learning.
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